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A Brownian dynamics simulation using the Lebwohl± Lasher (LL) nematogen model is
developed to investigate liquid crystals (LCs) on two-dimensional lattices. According to the
examination of defect annihilation and domain growth, this methodology appears to be a
successful approach in studying the LC dynamics, its main advantage being that the time
evolution in the simulation mimics the physical time, in contrast to related modellings
published recently. In addition, the FreÂ edericksz transition of an LC under static magnetic
® elds is reproduced. Further analysis of the simulation outputs and the associated continuum
theory of LC elasticity reveals that the LL potential can, by analogy, be obtained from the
Frank energy. As a result, the methodology of the combination of Brownian dynamics
simulation with the LL model is proven valid and can be extended to study the director
dynamics of LCs subjected to external ® elds.

1. Introduction The dynamics of defect annihilation and domain
growth in thermodynamically unstable systems is anLiquid crystals (LCs) exhibit fruitful and characteristic

microstructures [1, 2]. An appreciation of LC micro- outstanding problem in statistical physics [12, 13]. One
of the typical dynamic systems of interest is an LC under-structures leads to an understanding of the properties of

LCs and the possibility of tailoring them for speci® c going a texture evolution [7]. Computational models
on a supramolecular scale have enabled equilibriumrequirements. LC microstructures can be dealt with by

the Frank elastic theory, whilst restructuring dynamics structures to be predicted for given boundary conditions
and have also facilitated the modelling of the process ofis treated by the Ericksen± Leslie (EL) theory [1]. Both

the Frank and EL theories describe LCs on the continuum microstructural relaxation of LCs [5± 10, 14± 17]. In two
recent reports [8, 9], the LC textures initiated from alevel. On the other hand, molecular theories have been

developed by Maier± Saupe, Onsager and Doi, etc. random isotropic state were calculated using a simple
two-dimensional (2D) lattice model proposed originally[2]. Computer simulation provides a third theoretical

method, its main advantage being the easy inclusion of by Lebwohl and Lasher [11] and then developed by
Bedford et al. [5]. The computer simulations notedcomplicated static and dynamic interactions [3± 11].

For instance, Zannoni and co-workers [3] and Yang above [5± 10] were carried out by iteration after mini-
mizing an interaction energy between nearest-neighbouret al. [4] performed Monte Carlo (MC) simulations of

LCs, while Windle and co-workers [5± 8] and Kimura (NN) lattices. This work is of great help, with advantages
as pointed out by the authors. On the other hand,and Gray [9, 10] developed an iterative algorithm to

obtain the equilibrium state of an LC under a certain the disadvantages are also obvious. The most serious
problem is, in our opinion, that the number of iterationboundary condition. These modelling approaches are

commonly based on the Lebwohl± Lasher (LL) nemato- steps cannot be guaranteed to be linearly proportional
to the physical relaxation time. The modellings aregen potential model developed from the Maier± Saupe

potential for simulation on lattices [11]. therefore not a vivid simulation of the evolution process
and are unsuitable for quantitative investigation in the
strict sense of dynamics.*Author for correspondence.
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102 Jiandong Ding and Yuliang Yang

Another important method which should be mentioned relationship between the LL potential used in the
computer modelling and the Frank elastic energy usedis MC simulation [3, 4]. The MC iteration step linearly

relates to real time to some extent. In most MC simu- in the continuum theory. This aim will be achieved
by (1) examining Frank constants implied in the LLlations of LC systems [3, 4], whether the new orientation

state is accepted or rejected depends only on the energy potential according to the simulation of the correspond-
ing FreÂ edericksz transition and (2) giving a theoreticaldi� erence between them, but the details of the potential

barrier between the two states cannot be taken into analysis to the LL model by analogy to the Frank theory.
consideration. Therefore, the MC method cannot describe
very fast relaxation. In order to resolve these problems,

2. Simulation algorithm
we have employed a Brownian dynamics simulation

For simplicity, the simulation is similar to those in[14± 18] to study the texture evolution in an LC system
[8, 9], performed on 2D square lattices. In fact, thesealso using the LL model on lattices. With this method,
modelling methods and our own can readily be extended

the linearization of the simulation with real time is
into three dimensions. Our algorithm is unique in that

achieved, which is the main advantage over the previous
the rotation of the local director at each lattice site is

modelling work on texture evolution [5± 10]. We should
described by the Langevin equation written as

further note that if the time step is small enough in the
simulation, the evolution process can re¯ ect the details

j
dh i

dt
= fn,i+ fh,i+ f l,i (1 )of the local potential and, hence, the fast relaxation.

This is the main advantage of the Brownian dynamics
simulation over the MC method. In this paper, the where h i is the orientation angle of the local director at
evolution process of LC domains is described with the the ith lattice site with the zero angle de® ned along
Brownian dynamics simulation, and the scaling law for the plates or the horizontal direction; fn,i , fh,i , and f l,i
domain coarsening with time is revealed plausibly. denote the nematic torque due to anisotropic interaction

Furthermore, we would like to point out that this between the NN lattices, the magnetic torque imposed
algorithm can also be employed to treat external on the local director and the Langevin stochastic torque,
® eld e� ects on LCs by reproducing the FreÂ edericksz respectively; j is the friction coe� cient and reads
transition. This phenomenon refers to the transition of j=kT /D . Here, kT is the Boltzmann constant multiplied
the orientational direction of the LC system sandwiched by the absolute temperature; D is the e� ective rotational
between two plates with the increase of the strength of di� usivity. Actually, the value of D depends, especially
the external magnetic ® elds. The cell con® gurations for for a polymeric LC, upon the local orientation of the
splay and bend deformations are schematically presented director and the local order parameter, due to the tube
in ® gure 1. The measurement of the associated transition dilation e� ect [2]. In this paper, D is, for simplicity,
points has conventionally been employed as a standard assumed to be a constant. The back ¯ ow e� ect is also
method to determine experimentally the principal neglected, which, as usual, does not bring about serious
Frank constants, K11 (splay), K22 (twist) and K33 ( bend) consequences [1].
[1]. The other purpose of this paper is to reveal the The 2D LL potential at position i, E (h i ), can be

written as

E (h i ) =
1

4
kT U �

j×NN
sin2

(h i Õ h j ) (2 )

where U designates the dimensionless strength of the
nematic interaction reduced by kT . The summation is
made over four NN sites. This potential is therefore free
of the mean-® eld approximation. The corresponding
elastic torque is readily expressed as fn,i= Õ dE (h i )/dh i .
Through this model, not only is the nematic interaction
considered, but also the spatial correlation of the local
directors is introduced.

The model system is divided into 50 Ö 50 lattices with
the periodic boundary condition [3, 4, 14± 17], unless

Figure 1. Schematic presentation of FreÂ edericksz transitions
otherwise indicated. When the FreÂ edericksz transition isfor (a) splay and (b) bend deformations. Corresponding
dealt with, one dimension is restricted by the upper andtransition points can be applied to measure the Frank

elastic constants, K11 and K33 , respectively. lower plates. The surface-anchoring potential at position
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103Simulation of dynamics of L Cs

i near the plates, Es (h i), reads scaled order parameter, S , is de® ned as

S = 7 2 cos2
(h i Õ H) Õ 1 8 (8 )Es (h i) =kT U s sin2

(h i Õ ha ) (3 )

where H represents the orientation of the whole system.where U s represents the dimensionless strength of the
S is a nonconserved order parameter in the evolutionanchoring energy and is, tentatively, set equal to U in
process. The equilibrium order parameter is obtained inthis paper; ha is the anchoring angle with ha=0 for the
the case without magnetic ® elds [ fh,i=0 in equation (1)]parallel anchoring associated with splay deformation
and shown in ® gure 2 versus the dimensionless potentialand ha=p/2 for the homeotropic anchoring associated
U . In order to reduce the scattering of the statisticalwith bend deformation.
value of S , the average is made over 5000 run-stepsThe interaction energy between the magnetic ® elds
after the equilibrium state is reached or over 20 000and the local director can be described as
run-steps when U is near the transition point. The

Eh (h i) = Õ kT Uh cos2
(h i Õ hh ) (4 ) well-known statistical principle has been employed that

the average over ensemble in the equilibrium state iswhere Uh is the reduced dimensionless magnetic ® eld
equivalent to that over time. Our Brownian dynamicsstrength and reads
simulation gives reasonably a continuous isotropic±

Uh=eh /(kT ) , eh=0´5xaH
2
. (5 ) anisotropic transition in 2D ( ® gure 2). The transition

point, U* =6 7́, is higher than that predicted by mean-Here, H is the ® eld strength; xa is the anisotropy of the
® eld theory (U*=4) where the thermal ¯ uctuation ismagnetic susceptibility and is, without loss of generality,
neglected [19]. (The value of U de® ned by Marrucciassumed to be positive; the term eh refers to the maximum
and Ma� ettone is only half of that by us, so U* =2 inmagnetic energy under a given magnetic ® eld strength.
their paper [19].)The magnetic torque can also be easily obtained by

fh,i= Õ dEh (h i)/dh i .
3.2. Domain growth dynamicsThe Langevin torque results from the Brownian thermal

Now we examine the dynamics of this system with-¯ uctuation. Its e� ect on the time evolution of the director
out magnetic ® elds and in the LC state (U >U*). Arotation at position i can be realized by a white noise,
typical trajectory relaxed from a random initial state is

W i , which obeys the Einstein ¯ uctuation± dissipation
described by ® gure 3. This ® gure shows the texturetheorem
evolution in a material that has been quenched from

7 W i( t ) 8 =0, 7 dW i( t) dW i( t ¾ ) 8 =d ( t Õ t ¾ ) dtdt ¾ . the athermal isotropic phase inside the nematic phase.
Defects with di� erent strengths and signs are produced(6)
and annihilated with time. But the defects with strength
|s|=1/2 predominantly remain because the energy of aAs a result, the Langevin equation (1) can be rewritten
defect is proportional to s

2 [1] and the defects withas
higher strength are therefore much less stable. This
phenomenon is also reproduced in earlier computerdh i= Õ

1

4
DU �

j×NN
sin[2 (h i Õ hj ) ]dt

modellings [8, 9]. The main advantage of our method

Õ DUh sin[2 (h i Õ hh ) ]dt + ( 2D )
1/2 dW i . (7 )

In a computer simulation time must be discretized.
The time step, D(Dt ), is taken to be 0 0́1, which is
reasonable [14]. A run-step is complete after all lattices
are operated with equation (7) in sequence. (Operating
randomly exhibits no essential di� erence for our simu-
lation.) The number of run-steps or the evolution time
in simulation is therefore directly proportional to the
physical time with the coe� cient of di� usivity, D . The
LC dynamics can hence be described with a reasonable
temporal scaling by the Brownian dynamics simulation.

3. Results and discussion

3.1. Isotropic± anisotropic transition Figure 2. Scaled order parameter S as a function of reduced
In an LC system, the calculation of the orientational interaction potential U showing an isotropic± anisotropic

transition.order parameter is of central importance. In 2D the
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104 Jiandong Ding and Yuliang Yang

Figure 3. A typical trajectory for
the texture evolution in an LC
system initiated from a random
isotropic state undergoing the
indicated run-steps: U =100,
D(Dt )=0 0́1 for each runstep.

is that the number of runsteps in the Brownian dynamics that due to the square lattice and the NN interaction
simulation is directly proportional to real time. Hence, chosen in the present paper, the domain boundaries
domain growth dynamics can be studied quantitatively prefer to orient along the horizontal and vertical directions
in the strict sense of dynamics. ( ® gure 3 ), which will, in principle, stabilize domain

Since it is not very convenient to measure domain walls and slow the coarsening. Evolution velocities are
size directly from the micrographs we employ another, thus dependent upon the form of lattice and interaction
indirect, characterization of the domain size termed considered. Nevertheless, we believe that the funda-
ìnverse perimeter density’ by the calculation of energy. mental defect-evolution behaviours may not change with
From [13] the domain size RE ( t ) is de® ned as lattice as usual, and particularly the domain-coarsening

exponent may not be altered.
Such a scaling law exists in many systems [12, 13, 20].RE ( t) =

E0

E ( t) Õ Eeq
(9 )

By the coupled maps method based on a mean-® eld
approximation, Wang con® rmed that the growth exponentwhere E ( t ) is the total energy of the system at time t

for the nonconserved three-state Potts model is 1/2[for each lattice, the energy can be obtained from
[12]. Due to the limit of the mean-® eld approximation,equation (2)]; E0 is the system energy in the random
Wang ignored thermal ¯ uctuation. This e� ect wasinitial state; Eeq is that in equilibrium and equals zero
also neglected in [8, 9]. In contrast to these, thermalif the thermal ¯ uctuation is neglected. The ìnverse
¯ uctuation has been intrinsically included in ourperimeter density’ is associated with the number of
Brownian dynamics simulation. The other advantage ofdomain boundaries and hence of domain sizes [12, 13].
our approach is that if we set f l,i=0 in equation (1),The result under the same condition as that in ® gure 3
the case without thermal ¯ uctuations can also be dealtis given in ® gure 4 (a). The average is taken over 80
with. The simulated outputs with and without thermalindependent trajectories. The good linear relation reveals

a convincing scaling law, RE ( t) ~ t
1/2. It should be noted ¯ uctuations are shown in ® gure 4 (b). The scaling law
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105Simulation of dynamics of L Cs

in a computer experiment by increasing the reduced
magnetic ® eld strength, Uh . A continuous transition
takes place in 2D and the transition curves are shown
in ® gure 5. In order to reduce the scattering of the data,
the statistical values are obtained by averaging over
10 000 run-steps after the equilibrium state is reached at
corresponding Uh . According to analysis of the Euler±
Lagrange equation on the Frank energy [1], the critical
transition point Uh (crit ) (~H

2 ) must be inversely pro-
portional to the square of the depth. The simulated
outputs of Uh (crit )/U are 0 0́23, 0 0́12 and 0 0́06 under
d =10, 14 and 20, respectively. The proportion is
reasonably close to 4 : 2 : 1. Hence, Brownian dynamics
simulation does seem to be an e� cient approach in
studying the external ® eld e� ects on LC systems.

The more interesting result is that splay deformation
and the corresponding bend deformation share the
same FreÂ edericksz transition point, as shown in ® gure 6.
This result reveals that the famous LL model implies
the equal elastic-constant approximation, and the
relationship between the `molecular’ model and the
continuum model is thus elucidated by examination of
the FreÂ edericksz transition with Brownian dynamics
simulation.

3.4. Relation between the L L potential and Frank energy
At this point, we would like to ask how the LL

potential is related to the Frank energy. In 2D and
Figure 4. The domain size RE ( t ) vs (Dt )1/2 for an LC system

under the equal elastic-constant approximation, namely,initiated from a random isotropic state. (a) Under the same
K11 =K33 =K , the density of the Frank energy, g, canconditions as those in ® gure 3; (b) comparison between
be easily expressed asdomain growth dynamics with thermal ¯ uctuation (TF)

and without thermal ¯ uctuation (NTF).

g =
K

2 C A qh

qx B
2

+ A qh

qy B
2D (10)

is not always obeyed without thermal ¯ uctuations,
especially for a high U , i.e. a low reduced temperature.
It can be easily comprehended that because of the neglect
of thermal ¯ uctuations, the stationary state depends
strongly on the initial conditions and the system is
trapped in some local free energy minimum. Thermal
¯ uctuations are, therefore, important and sometimes
necessary to describe properly the dynamics of a non-
equilibrium system. It is reasonable that the evolution
is faster under a higher U than that under a lower U or
with weaker nematic interactions, ® gure 4 (b). We can
further see from ® gure 4 (b) that the neglect of thermal
¯ uctuations does not enhance, but reduces the evolution
velocity for the system studied in this paper.

3.3. FreÂ edericksz transition
Since the simulation is carried out on 2D lattices, only

splay and bend deformations can be examined. When
the FreÂ edericksz transition is dealt with, we let U =15, Figure 5. FreÂ edericksz transition curves with respect to the
which guarantees that the system is in the nematic state. bend deformation and with di� erent depths (d=10, 14, 20;

U =15).Corresponding FreÂ edericksz transitions are reproduced
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106 Jiandong Ding and Yuliang Yang

equation (11) cannot always be satis® ed in computer
modelling. The analysis given above is, therefore, only
based on analogy. In our opinion, equation (12) is
a key to making the LL model successful, because
sin2 (Dh)= sin2 (Dh + mp) with m denoting an integral.
This property of the sinusoidal function eliminates the
possible mistake of directly using Dh and guarantees the
equivalence between n and Õ n for a nematic LC, where
n is a unit vector standing for the director ® eld.

Such an analysis might shed light onto a reasonable
mesoscopic potential embodying unequal Frank con-
stants and in three dimensions. It should be mentioned
that Windle and co-workers have revised the LL model
by introducing the two di� erent Frank constants, K11

and K33 , in 2D [6]. In another paper, the twist elastic
Figure 6. FreÂ edericksz transition curves with respect to the constant, K22 , was further included in three dimensions

splay deformation and the bend deformation: d =20;
[7]. These pioneering researches are very helpful.U =15.
Nevertheless, the so-termed K11 , K22 and K33 in their
papers seem to be merely the coe� cients of the energy
function and no convincing proof has been given, up toand the cross term such as (qh/qx) (qh/qy) is fortunately
now, to verify that these coe� cients are really the Frankeliminated under this approximation.
constants. Hence, further e� ort to propose and con® rmNow, we discretize the LC system into lattices and,
a simple and reasonable expression of the nematicsimilarly to the LL model, consider only the interactions
interaction for computer modelling, including unequalbetween the central lattice and every one of the four
Frank constants, is strongly desired.NN lattices. Equation (10) is thus rewritten as

4. Conclusionsg (x, y) =
K

4
{[h(x, y) Õ h(x Õ 1, y) ]2

We have combined the LL model with Brownian
dynamics simulation to study LC systems on lattices.+ [h(x + 1, y) Õ h(x, y) ]2

The algorithm is veri® ed to be a successful approach to
+ [h(x, y) Õ h(x, y Õ 1 ) ]2

simulation of the dynamic process, its main advantage
being that the evolution time in the simulation embodies+ [h(x, y + 1 ) Õ h(x, y) ]2

}. (11)
the physical time in the strict sense of dynamics, in

Obviously, the di� erentials in equation (10) are replaced contrast to other recent publications [8, 9]. The texture
by the simple di� erences in equation (11), which stands evolution of an LC system involving multiple defects is
only if Dh � 0. Under this limitation condition, observed and the scaling law concerning domain growth

is reasonably revealed with the growth exponent ~1/2Dh# sin (Dh) . (12)
in 2D. Thermal ¯ uctuations are found to be important

The elastic potential at the i-th lattice site can be and bene® cial to the computer modelling of the present
expressed as problem. We would like to suggest that this simulation

methodology might be helpful for studies on nonlinear
g i=

K

4
�
j×NN

sin2
(h i Õ h j ) . (13) dynamics and nonequilibrium statistics of LCs besides

the texture evolution described in this paper. As a pre-
liminary extension, the Brownian dynamics simulationBy comparison between this relation and the LL

potential, equation (2), we get has been applied to investigate the unusual director
tumbling phenomenon in liquid crystalline polymers

K =kT U. (14)
under simple shear ¯ ow [14± 16].

The FreÂ edericksz transition of an LC under staticHence, the interaction strength in the LL potential is
equivalent to the Frank constant, and the macroscopic magnetic ® elds is further reproduced using Brownian

dynamics simulation. We con® rm that the simulationelastic distortion arises, in physical essence, from the
microscopic or mesoscopic nematic interaction. approach developed by us is also suitable for dealing

with external ® eld e� ects on LCs. Using BrownianIt is necessary to point out that, in the strict sense,
equation (13) cannot be derived from equation (10), dynamics simulation and the LL nematogen model, we

have made the ® rst investigation of the external staticbecause the di� erence approximation used in obtaining
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